Nuclear Energy

Print Friendly, PDF & Email

Nuclear Energy

Introduction

Everything around us is made up of tiny objects called atoms. Most of the mass of each atom is concentrated in the center (which is called the nucleus), and the rest of the mass is in the cloud of electrons surrounding the nucleus. Protons and neutrons are subatomic particles that comprise the nucleus.

Under certain circumstances, the nucleus of a very large atom can split in two. In this process, a certain amount of the large atom’s mass is converted to pure energy following Einstein’s famous formula E = MC2, where M is the small amount of mass and C is the speed of light (a very large number). In the 1930s and ’40s, humans discovered this energy and recognized its potential as a weapon. Technology developed in the Manhattan Project successfully used this energy in a chain reaction to create nuclear bombs.

Soon after World War II ended, the newfound energy source found a home in the propulsion of the nuclear navy, providing submarines with engines that could run for over a year without refueling. This technology was quickly transferred to the public sector, where commercial power plants were developed and deployed to produce electricity.

There are over 400 power reactors in the world (about 100 of these are in the USA). They produce base-load electricity 24/7 without emitting pollutants (including CO2) into the atmosphere. They do, however, create radioactive nuclear waste which must be stored carefully. There are two fundamental nuclear processes considered for energy production: fission and fusion.

Fission is the energetic splitting of large atoms such as Uranium or Plutonium into two smaller atoms, called fission products. To split an atom, you have to hit it with a neutron. Several neutrons are also released which can go on to split other nearby atoms, producing a nuclear chain reaction of sustained energy release. This nuclear reaction was the first of the two to be discovered. All commercial nuclear power plants in operation use this reaction to generate heat which they turn into electricity.

Fusion is the combining of two small atoms such as Hydrogen or Helium to produce heavier atoms and energy. These reactions can release more energy than fission without producing as many radioactive byproducts. Fusion reactions occur in the sun, generally using Hydrogen as fuel and producing Helium as waste (fun fact: Helium was discovered in the sun and named after the Greek Sun God, Helios). This reaction has not been commercially developed yet and is a serious research interest worldwide, due to its promise of nearly limitless, low-pollution, and non-proliferative energy.

Previous Post
Next Post

ADMIN