Nuclear fusion technologies

Print Friendly, PDF & Email

Nuclear fusion technologies

Fusion power offers the prospect of an almost inexhaustible source of energy for future generations, but it also presents so far insurmountable engineering challenges. The fundamental challenge is to achieve a rate of heat emitted by a fusion plasma that exceeds the rate of energy injected into the plasma. The main hope is centred on tokamak reactors and stellarators which confine a deuterium-tritium plasma magnetically.

Today, many countries take part in fusion research to some extent, led by the European Union, the USA, Russia and Japan, with vigorous programs also underway in China, Brazil, Canada, and Korea. Initially, fusion research in the USA and USSR was linked to atomic weapons development, and it remained classified until the 1958 Atoms for Peace conference in Geneva.

Following a breakthrough at the Soviet tokamak, fusion research became ‘big science’ in the 1970s. But the cost and complexity of the devices involved increased to the point where international co-operation was the only way forward.

With current technology, the reaction most readily feasible is between the nuclei of the two heavy forms (isotopes) of hydrogen – deuterium (D) and tritium (T). Each D-T fusion event releases 17.6 MeV (2.8 x 10-12 joule, compared with 200 MeV for U-235 fission and 3-4 MeV for D-D fusion). On a mass basis, the D-T fusion reaction releases over four times as much energy as uranium fission. Deuterium occurs naturally in seawater (30 grams per cubic metre), which makes it very abundant relative to other energy resources. Tritium occurs naturally only in trace quantities (produced by cosmic rays) and is radioactive, with a half-life of around 12 years. Usable quantities can be made in a conventional nuclear reactor, or in the present context, bred in a fusion system from lithium. Lithium is found in large quantities (30 parts per million) in the Earth’s crust and in weaker concentrations in the sea.

In a fusion reactor, the concept is that neutrons generated from the D-T fusion reaction will be absorbed in a blanket containing lithium which surrounds the core. The lithium is then transformed into tritium (which is used to fuel the reactor) and helium. The blanket must be thick enough (about 1 metre) to slow down the high-energy (14 MeV) neutrons.

The kinetic energy of the neutrons is absorbed by the blanket, causing it to heat up. The heat energy is collected by the coolant (water, helium or Li-Pb eutectic) flowing through the blanket and, in a fusion power plant, this energy will be used to generate electricity by conventional methods. If insufficient tritium is produced, some supplementary source must be employed such as using a fission reactor to irradiate heavy water or lithium with neutrons, and extraneous tritium creates difficulties with handling, storage and transport.

The difficulty has been to develop a device that can heat the D-T fuel to a high enough temperature and confine it long enough so that more energy is released through fusion reactions than is used to get the reaction going. While the D-T reaction is the main focus of attention, long-term hopes are for a D-D reaction, but this requires much higher temperatures.

In any case, the challenge is to apply the heat to human needs, primarily generating electricity. The energy density of fusion reactions in gas is very much less than for fission reactions in solid fuel, and as noted the heat yield per reaction is 70 times less. Hence thermonuclear fusion will always have a much lower power density than nuclear fission, which means that any fusion reactor needs to be larger and therefore more costly, than a fission reactor of the same power output. In addition, nuclear fission reactors use solid fuel which is denser than thermonuclear plasma, so the energy released is more concentrated.

At present, two main experimental approaches are being studied: magnetic confinement and inertial confinement. The first method uses strong magnetic fields to contain the hot plasma. The second involves compressing a small pellet containing fusion fuel to extremely high densities using strong lasers or particle beams.

Magnetic confinement

In magnetic confinement fusion (MCF), hundreds of cubic metres of D-T plasma at a density of less than a milligram per cubic metre are confined by a magnetic field at a few atmospheres pressure and heated to fusion temperature.

Magnetic fields are ideal for confining plasma because the electrical charges on the separated ions and electrons mean that they follow the magnetic field lines. The aim is to prevent the particles from coming into contact with the reactor walls as this will dissipate their heat and slow them down. The most effective magnetic configuration is toroidal, shaped like a doughnut, in which the magnetic field is curved around to form a closed loop. For proper confinement, this toroidal field must have superimposed upon it a perpendicular field component (a poloidal field). The result is a magnetic field with force lines following spiral (helical) paths that confine and control the plasma.

There are several types of toroidal confinement system, the most important being tokamaks, stellarators and reversed field pinch (RFP) devices. In a tokamak, the toroidal field is created by a series of coils evenly spaced around the torus-shaped reactor, and the poloidal field is created by a system of horizontal coils outside the toroidal magnet structure. A strong electric current is induced in the plasma using a central solenoid, and this induced current also contributes to the poloidal field. In a stellarator, the helical lines of force are produced by a series of coils which may themselves be helical in shape. Unlike tokamaks, stellarators do not require a toroidal current to be induced in the plasma. RFP devices have the same toroidal and poloidal components as a tokamak, but the current flowing through the plasma is much stronger and the direction of the toroidal field within the plasma is reversed.

In tokamaks and RFP devices, the current flowing through the plasma also serves to heat it to a temperature of about 10 million degrees Celsius. Beyond that, additional heating systems are needed to achieve the temperatures necessary for fusion. In stellarators, these heating systems have to supply all the energy needed.

Research is also being carried out on several types of stellarator. Lyman Spitzer devised and began work on the first fusion device – a stellarator – at the Princeton Plasma Physics Laboratory in 1951. Due to the difficulty in confining plasmas, stellarators fell out of favour until computer modelling techniques allowed accurate geometries to be calculated. Because stellarators have no toroidal plasma current, plasma stability is increased compared with tokamaks. Since the burning plasma can be more easily controlled and monitored, stellerators have an intrinsic potential for steady-state, continuous operation. The disadvantage is that, due to their more complex shape, stellarators are much more complex than tokamaks to design and build.

RFP devices differ from tokamaks mainly in the spatial distribution of the toroidal magnetic field, which changes sign at the edge of the plasma. The RFX machine in Padua, Italy is used to study the physical problems arising from the spontaneous reorganisation of the magnetic field, which is an intrinsic feature of this configuration.

Inertial confinement

In inertial confinement fusion (ICF), which is a newer line of research, laser or ion beams are focused very precisely onto the surface of a target, which is a pellet of D-T fuel, a few millimetres in diameter. This heats the outer layer of the material, which explodes outwards generating an inward-moving compression front or implosion that compresses and heats the inner layers of material. The core of the fuel may be compressed to one thousand times its liquid density, resulting in conditions where fusion can occur.

The energy released then would heat the surrounding fuel, which may also undergo fusion leading to a chain reaction (known as ignition) as the reaction spreads outwards through the fuel. The time required for these reactions to occur is limited by the inertia of the fuel (hence the name), but is less than a microsecond. So far, most inertial confinement work has involved lasers.

Ignition may be achieved at lower temperature with a second very intense laser pulse guided through a millimetre-high gold cone into the compressed fuel, and timed to coincide with the peak compression. This technique, known as ‘fast ignition’, means that fuel compression is separated from hot spot generation with ignition, making the process more practical. A completely different concept, the ‘Z-pinch’ (or ‘zeta pinch’), uses a strong electrical current in a plasma to generate X-rays, which compress a tiny D-T fuel cylinder.

Cold fusion

Cold fusion describes a form of energy generated when hydrogen interacts with various metals like nickel and palladium. Cold fusion is a field of condensed matter nuclear science CMNS, and is also called low-energy nuclear reactions LENR, lattice-assisted nuclear reactions LANR, low energy nanoscale reactions LENR, among others. Cold fusion is also referred to as the Anomalous Heat Effect AHE, reflecting the fact that there is no definitive theory of the elusive reaction.

When hydrogen, the main element of water, is introduced to a small piece of the metal nickel or palladium, a reaction occurs that can create excess heat and transmutation products. Excess heat means more heat comes out of the system than went in to the system. The excess heat can make hot water and useful steam to turn a turbine and produce electricity.

Cold fusion devices are typically small table-top laboratory experiments, ranging in size from tiny test-tubes to small refridgerator-sized generators. In spite of the relatively small size of the cells, the cold fusion reaction produces so much heat, it is more than can be accounted for by chemical means. and therefore must be some type of new nuclear mechanism, for cold fusion is not like today’s dirty and dangerous nuclear power.

No radioactive materials are used in cold fusion. LANR occurs as the tiny protons, neutrons and electrons of hydrogen interact, releasing energy slowly, through heat and photons, without the dangerous radiationassociated with conventional nuclear reactions, and cold fusion makes no radioactive waste.

Previous Post
Next Post